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1. Line and Plane Detection

In this section, we provide detailed experimental setup
of the linear pattern recognition experiments. For the line
detection, we first sample random noise uniformly from a
hypercube with side length L = 1.5. We also translate
the hypercube randomly in the interval -2 to 2. We sample
dnL

D points for noise where dn is the noise density per unit
volume and D is the dimension of the space. To generate
points on a line, we first sample parameters of the line equa-
tion tv + c. The slope v ∈ RD is sampled uniformly from
a unit hypercube centered at the origin and the bias (inter-
cept) c ∈ RD is also sampled from the unit hypercube, but
we perturb c differently during training and testing: dur-
ing training, we add 1√

D
to the first element of c; during

testing, we add 1√
D

to the second and third elements of c.
It slightly changes the distribution of lines sampled during
training and testing to simulate unseen data during testing.
Next, we sample dlL

√
D points, proportional to the diago-

nal length of the D-dimensional hypercube, with Gaussian
noise with a standard deviation of 0.001L where dl is the
line density.

As we increase the dimension of the problem, noise
or outliers quickly dominate the dataset as the number of
points from noise increases exponentially. To mitigate, we
manually decrease the noise and line densities. At 16 di-
mension, we decrease the noise density from 100 to 10 and
the line density from 100 to 50; at 24 dimension, we drop
the noise density to 1 and the line density to 10; at 32 di-
mension, we further drop the noise density to 0.25 and the
line density to 1.

We use batch size 2 for all baselines and ours to be able
to load the data on a GPU, as the number of data points in-
creases exponentially with the dimension. We use stochas-
tic gradient descent with initial learning rate 1e-2 and decay
the learning rate by the factor of 0.99 after every epoch. We
train all networks for 40 epochs. For Qi et al. [1], we use
the balanced cross entropy [3] to slightly boost its perfor-
mance. We found that the balanced cross entropy was not
effective for the other networks. We thus use the standard
cross entropy to train all other networks.
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Figure 1: Examples of line detection in 8-dimensional data with
different sample densities. Data projected to a 2-dimensional plane
for visualization. Black dots are noise and blue marks are samples
from a 8-dimensional line. Blue marks are 20 times larger than
black dots for visualization.

Figure 2: Examples of 8-dimensional rank-2 subspace dataset pro-
jected to a 2-dimensional plane for visualization. Black dots are
noise and blue marks are samples from the rank-2 subspace.

1.1. Analysis of Line Density

We analyze the performance of various methods on the
line detection dataset. We conduct this experiment in 8-
dimensional space and vary the sampling density of dl. As
we decrease the density from 100 to 10, the line becomes
almost indistinguishable from noise (Fig. 1). We validate
our approach in such challenging conditions and present the
results in Tab. 1. Note that for all densities, our networks
outperform all baseline methods by a large margin even for
challenging cases where the density is extremely small.
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Table 1: Line detection in 8-dimensional space for various line densities.

Data Statistics Methods

Line Density SNR Zaheer et al. [4] + BN + IN Yi et al. [3] Ours
MSE F1 AP MSE F1 AP MSE F1 AP

100% 4.142% 0.192 0.487 0.692 0.132 0.530 0.845 2.07E-3 0.934 0.993
80% 3.940% 0.232 0.309 0.574 0.247 0.494 0.777 5.53E-3 0.883 0.991
40% 3.098% 0.275 0.207 0.216 0.248 0.329 0.653 0.026 0.795 0.979
20% 2.119% 0.314 0.155 0.295 0.332 0.151 0.200 0.168 0.384 0.832
10% 1.290% 0.517 0.095 0.132 0.509 0.096 0.112 0.331 0.132 0.523

Table 2: Pairwise registration with FPFH [2] on 3DMatch test scenes with 5cm downsampling. Translation Error (TE), Rotation Error
(RE), Recall in percent. The pairwise registration is successful if TE < 30cm and RE < 15◦. The time excludes the feature extraction.

FPFH + FGR FPFH + Yi et al. [3] + FGR FPFH + Yi et al. [3] + RANSAC FPFH + Ours + FGR FPFH + Ours + RANSAC
SNR TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate TE RE Succ. Rate

Kitchen 4.90% 9.32 3.92 44.86 8.06 3.36 55.53 9.10 3.65 57.71 6.07 2.46 68.97 7.25 2.68 74.51
Home 1 7.50% 9.13 3.53 51.92 8.76 3.23 64.10 9.28 2.99 67.31 7.93 2.59 74.36 8.88 2.82 78.21
Home 2 6.65% 9.02 3.58 36.54 7.96 3.13 45.19 10.02 3.71 53.85 7.99 3.23 57.69 9.53 3.58 65.87
Hotel 1 5.22% 10.20 3.86 46.02 9.14 3.46 57.52 11.25 3.80 61.95 8.71 2.90 76.11 9.15 3.06 86.28
Hotel 2 4.75% 10.69 4.82 35.58 9.74 3.82 50.00 11.06 4.52 56.73 8.18 2.82 70.19 9.29 3.24 76.92
Hotel 3 5.20% 13.10 4.69 46.30 10.36 3.86 57.41 10.59 4.05 68.52 6.57 2.63 74.07 6.83 2.72 81.48
Study 3.83% 14.20 4.74 27.40 12.95 4.01 37.67 12.88 4.09 48.63 11.23 3.12 60.62 12.30 3.33 66.44
Lab 4.98% 9.33 3.60 46.75 7.51 3.26 49.35 8.85 2.94 50.65 6.45 2.04 50.65 9.63 2.84 63.64

Average 10.62 4.09 41.92 9.31 3.52 52.10 10.38 3.72 58.17 7.89 2.72 66.58 9.11 3.03 74.17

2. 3D Match Dataset Comparison

In this section, we present a detailed experimental setup
and 5cm voxel-downsampling results of hyper surface de-
tection experiments on the 3DMatch dataset. First, we train
Yi et al. [3] on FPFH correspondences from 5cm voxel-
downsampled point clouds, following the standard proce-
dure [6]. We use the same hyperparameters, same data aug-
mentation except that we use balanced cross entropy loss
for Yi et al. [3] to boost its performance. For our convnets,
we use the conventional cross entropy loss. We report the
results in Tab. 2. Also, we present more visualizations of
correspondences before and after processing the putative
correspondences with our network in Fig. 3.

3. 2D Correspondences

In this section, we present additional qualitative results
on the YFCC100M test set in Fig. 4 and Fig. 5. Some failure
cases are shown in Fig. 6.
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Figure 3: Visualization of color-coded correspondences before and after the hyper-surface recognition. For each pair, we visualize 100
random correspondences on the left and another 100 random correspondences after the hyper plane detection with probability > 0.5. Red
lines are outlier correspondences and blue lines are inlier correpondences. The average inlier ratio is 1.76%.



Yi et al. [3] Zhang et al. [5] Ours Ours + SC

Figure 4: Visualization of image correspondenses on YFCC100M test dataset. Correspondences are colored as green if their symmetric
epipolar distance is lower than 10−4.



Yi et al. [3] Zhang et al. [5] Ours Ours + SC

Figure 5: Visualization of image correspondenses on YFCC100M test dataset. Correspondences are colored as green if their symmetric
epipolar distance is lower than 10−4.



Figure 6: Visualization of correspondence filtering failure cases with Zhang et al. [5] (top) and Ours + SC (bottom)


